How tardigrades protect their DNA to defy death

How tardigrades protect their DNA to defy death

Admin on 16 / 10 / 2019 under Article

A ‘fluffy cloud’ of protein shields water bears’ DNA from radiation, drying and other damage

 

Tardigrades may partly owe their ability to survive outer space to having the molecular equivalent of cotton candy.

 

Water bears, as the creatures are also known, can famously survive just about anything (SN: 7/14/17), including being bombarded with X-rays or cosmic rays, or being doused in hydrogen peroxide. Such radiation and chemical exposure result in production of DNA-damaging hydroxyl radicals, molecules composed of oxygen and hydrogen.

 

Previous research indicated that a protein called Dsup, for damage suppressor, shields the tardigrade species Ramazzottius varieornatus from radiation. When added to human cells, the protein also protects against radiation. Now researchers have found out how.

 

Dsup surrounds nucleosomes — DNA wound around proteins called histones —  “like a fluffy cloud of cotton candy,” molecular biologist James Kadonaga of the University of California, San Diego in La Jolla and colleagues report October 1 in eLife. That cloud keeps hydroxyl radicals away from DNA.


Another tardigrade species Hypsibius exemplaris, previously thought to lack Dsup, has its own version of the protective protein, the researchers discovered. Only about 26 percent of the amino acids in the two species’ Dsup proteins are alike, but both shroud DNA against damage.

 

Kadonaga says the proteins probably evolved to protect tardigrades from hydroxy radicals when the moss-dwellers are dried out, a frequent occurrence (SN: 12/16/15). Drying increases the concentration of DNA-dinging radicals in cells. And damage can’t be repaired while the animals are dormant in their desiccated state. Since X-rays also form hydroxy radicals, tardigrades “just happen to be X-ray resistant,” too, he says.

 

Humans have similar proteins called high mobility group nucleosome-binding proteins or HMGNs. But the researchers don’t yet know whether the human proteins also form a similar shield against DNA-damaging chemicals.

 

From source: https://www.sciencenews.org/article/tardigrades-dna-damage-radiation-death

Leave a Reply

Your email address will not be published. Required fields are marked *

Recently Published Articles
American Scientific Reports in Infection Prevention and Control

American Scientific Repor...

American Scientific Reports in Infection Prevention and Control is an Scholarly Open Access scient

American Scientific Reports in Communicable Diseases

American Scientific Repor...

American Scientific Reports in Communicable Diseases is an international peer reviewed journal pub

American Scientific Reports in Clinical Nutrition

American Scientific Repor...

American Scientific Reports in Clinical Nutrition is an international journal providing essential

American Scientific Reports in Mental Health

American Scientific Repor...

American Scientific Reports in Mental Health is an International open access journal that publishes

American Scientific Reports in Surgery and Anesthesia

American Scientific Repor...

American Scientific Reports in Surgery and Anesthesia is an International open access, peer-revie

American Scientific Reports in Pediatrics

American Scientific Repor...

American Scientific Reports in Pediatrics is an international Open Access, peer-reviewed journal t

American Scientific Reports in Gynecology and Obstetrics

American Scientific Repor...

American Scientific Reports in Gynecology and Obstetrics is an international open access peer-revi

American Scientific Reports in Otolaryngology and Rhinology

American Scientific Repor...

American Scientific Reports in Otolaryngology and Rhinology is an international, open access, pee

Indexing Partners

image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing
image-missing